CO₂ Capture From Existing Coal-Fired Power Plants **April 2007** Jared P. Ciferno - National Energy Technology Laboratory #### **Disclaimer** This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. ### **Overview** <u>Purpose</u>: To perform a thorough engineering and economic analysis helps answer the following questions: #### If carbon constraints are mandated in the U.S. then..... - 1. Will retrofit of an existing pulverized coal plant at some modest but non-trivial level of CO₂ removal ever be a worthwhile option to consider? - 2. What level of CO₂ recovery is economically optimal? - 3. Is there a way to significantly reduce the cost of CO₂ capture for the **existing** fleet? - 4. What actions would need to be taken to address **existing** power plants? # **Background—Fall 2005 Scoping Study** Question: Is there enough information in the literature to answer these questions? ### **Scoping Study Objectives:** - Literature search on large-scale CO₂ capture from existing PC plants - 2. Identify barriers to CO₂ capture retrofits - 3. Investigate <u>all</u> potential cost saving strategies - 4. Define 'optimal' level of CO₂ recovery - 5. Is there enough information available to calculate the optimal level of CO₂ recovery? If not, develop a plan for a more detailed study ## **Background: Study 1** ### 1991: EPRI/IEA/Fluor Daniel¹ - New 500 MW PC Plant - Sensitivity Studies: 50% and 20% CO₂ capture on <u>new</u> plant - Retrofit 500 MW PC plant using MEA with 90% CO₂ capture | | NEW | | | | Retrofit* | |----------------------------|-------|--------|--------|--------|-----------| | CO ₂ Capture, % | 0 | 90 | 50 | 20 | 90 | | Gross Power, MW | 554 | 447 | 488 | 529 | 447 | | Auxiliary Power, MW | 41 | 109 | 79 | 53 | 111 | | Heat Rate, Btu/kWh | 9,800 | 14,900 | 12,300 | 10,600 | 15,000 | | Efficiency, % | 35 | 23 | 28 | 32 | 23 | | COE, cents/kWh | 4.2 | 9.3 | 7.2 | 5.7 | 10 | | Increase in COE, % | - | >100 | 71 | 36 | >100 | ## **Background: Source 2** ### 2001: DOE-NETL/Alstom Power - <u>Retrofit</u> of AEP's Conesville Unit #5 (463 MW) plant via 1.) MEA scrubbing, 2.) Oxy-fuel combustion, 3.) MEA/MDEA scrubbing - Minimum 90% flue gas CO₂ captured #### **Conclusions** - "...oxy-fuel most promising for 90% capture, but MEA and MEA/DEA scrubbing 'appears' to be cheaper at <90% capture levels..." - "...specific investment costs are high, ranging from about 800 to1800 \$/kW..." - "...all cases indicate <u>significant</u> increases to the COE as a result of CO₂ capture—about 6.2 cents/kWh (2001\$)" # **Background: Source 3** #### 2004: Canadian Clean Coal Power Coalition/IEA GHG - Objective: "To demonstrate that coal-fired electricity generation can effectively address all environmental issues projected in the future, including CO₂." - Evaluated amine scrubbing and oxy-fuel combustion for <u>existing</u> PC power plants and gasification for <u>new</u> power plants #### **Conclusions** - Identified significant opportunities to optimize amine scrubbing efficiency via heat integration---ONLY with a New Plant! - "...during the course of Fluor's studies it became apparent that retrofits would be less attractive than expected. Therefore, the later stages of the studies concentrated on greenfield applications for all technologies..." # **Background: Source 4** ### 2004: Nexant for the CO₂ Capture Project (CCP) - Cost reduction opportunities for an <u>NGCC</u> post-combustion retrofit system using advanced amines - Identified 8 significant cost cutting ideas for NGCC retrofits | | 1 | 2 | BIT | |----------------------------------|------|------|--------| | CO ₂ Capture, % | 0 | 90 | 90 | | Net Power, MW | 392 | 322 | 357 | | Efficiency, % | 57.6 | 47.3 | 52.5 | | \$/tonne CO ₂ Avoided | - | 60 — | → 28.2 | - Cost reduction is too impressive to be ignored - Question is: Could some of Nexant's recommendations be applied to a retrofit PC power plant? # **Barriers to CO₂ Retrofits** - 1. Lower efficiency due to less energy integration—plant operation at non-optimum conditions - 2. Limited regeneration steam availability—can steam turbine operate at part load? - 3. Major equipment modifications or redundancy - 4. May need separate utility systems, such as cooling water supply for the capture unit, less economies of scale - 5. Make-up power—satisfy need to maintain baseload output - 6. Sulfur—additional deep sulfur removal required for most CO₂ sorbents - 7. Space limitations—acres needed for current scrubbing # Potential Cost Saving Strategies Technology improvements in past 5-10 years | Potential Retrofit Options | Outcome/Notes | |------------------------------|--| | 1. Heat Integration | ↓ Steam Consumption | | 2. Minimize equipment needed | ↓ Capital cost (ex. No flue gas cooler) | | 3. Lower cost of materials | ↓ Capital cost (stainless vs. carbon steel) | | 4. Structured column packing | ↓ Capital cost, ↓ Sorbent rate (ex. KS1) | | 5. Plate-and-frame HX | ↓ Capital cost | | 6. ANSI Pumps vs. API Pumps | ↓ Capital cost | | 7. Vapor-recovery system | ↓ Steam Consumption | | 8. Large diameter absorbers | ↓ # of Absorbers, ↓ Capital cost | | 9. Advanced solvents* | ↓ Capital cost, ↓ Sorbent circ. rate (ex. KS1) | | 10. Lower re-boiler duty | ↓ Steam Consumption | #### *Example: Current amines (MEA) require at least 1,600 Btu/lb CO₂ captured Fluor Econamine FG+ requires 1,300-1,400 Btu/lb CO₂ captured Mitsubishi's KS-1 solvent requires 1,200 Btu/lb CO₂ captured # **Optimal versus Required CO₂ Removal** - 1. The capture rate that results in minimum \$/tonne CO₂ avoided or \$/ton CO₂ captured - 2. Fraction CO₂ removed at specified COE or \$/tonne avoided - 3. $\triangle COE_{retrofit}$ (x% capture) = $\triangle COE_{greenfield}$ (90% capture) - 4. Carbon tax—sufficient removal rate such that incremental COE equals the carbon tax ## **Scoping Study Conclusions** - Minimal economic and performance data exists for CO₂ capture from existing pulverized coal power plants - 2. Majority analyses focused on 90% CO₂ capture from **new** plants - 3. Significant improvements in CO₂ scrubbing technologies in past 5-10 years - 4. Detailed Systems Analysis Recommended # Carbon Sequestration From Existing Power Plants Feasibility Study December 2005—December 2006 ### **Team Members** ### **Study Scope** - 1. 30%, 50%, 70%, 90% and CO₂ capture levels - 2. Employ scrubbing technology advances - 3. <u>Detailed</u> steam turbine analysis by ALSTOM's steam turbine retrofit group - 4. Employ CO₂ capture and compression heat integration - 5. Site visits to specify exact equipment location - 6. Make-up power via new PC and NGCC (with 90% CO₂ capture) # **Design Basis: Assumptions** ### **Economic** | Dollars (Constant) | 2006 | | | | | |--|------|--|--|--|--| | Depreciation (Years) | 15 | | | | | | Equity (%) | 44 | | | | | | Debt (%) | 56 | | | | | | Corporate Tax (%) | 20 | | | | | | Discount Rate (%) | 7.5 | | | | | | Capital Charge Factor (%) | 13.5 | | | | | | Coal (\$/MM Btu) | 2.11 | | | | | | Capacity Factor (6,307 hr/yr) | 72 | | | | | | CO ₂ transport and Storage Costs not included | | | | | | ### **Location: AEP Conesville Unit #5** - Total 6 units = 2,080 MWe - Unit #5: - Subcritical steam cycle (2400psia/1005°F/1005°F)* - Constructed in 1976. - 463 MW gross (~430 MW net) - ESP and Wet lime FGD (95% removal efficiency, 104 ppmv) #### Mid-western bituminous coal | Ultimate Analysis (wt.%) | As Rec'd | |--------------------------|----------| | Moisture | 10.1 | | Carbon | 63.2 | | Hydrogen | 4.3 | | Nitrogen | 1.3 | | Sulfur | 2.7 | | Ash | 11.3 | | Oxygen | 7.1 | | HHV (Btu/lb) | 11,293 | ### **Existing Plant Modifications** ### **Modified FGD Process** - Second stage absorber added to achieve 99.7% SO₂ removal efficiency (6.5 ppmv) - 2. Estimated EPC cost for each case (30-90%) is \$20.5MM - 3. includes an SO₂ Credit equal to \$608/ton in the Variable O&M cost # **CO₂ Capture Process Key Parameters** | Process Paramater | Units | 2006 | 2001 | AES Design | |--------------------------|--------------------------------|-------------|----------|------------| | Plant Capacity | Ton/Day | 9,350-3,120 | 9,888 | 200 | | CO ₂ Recovery | % | 90-30 | 90 | 96 | | CO ₂ in Feed | mol % | 12.8 | 13.9 | 14.7 | | SO ₂ in Feed | ppmv | 10 (Max) | 10 (Max) | 10 (Max) | | Solvent | | MEA | MEA | MEA | | Solvent Concentration | Wt. % | 30 | 20 | 17-18 | | Lean Loading | mol CO ₂ /mol amine | 0.19 | 0.21 | 0.10 | | Rich Loading | mol CO ₂ /mol amine | 0.49 | 0.44 | 0.41 | | Steam Use | lbs Steam/lb CO ₂ | 1.67 | 2.6 | 3.45 | | Stripper Feed Temp | ۰F | 205 | 210 | 194 | | Stripper Bottom Temp | ۰F | 247 | 250 | 245 | | Feed Temp to Absorber | ۰F | 115 | 105 | 108 | Note: Additional data in "notes pages" - Reboiler operated at 45 psia—reduced from 65 psia used in 2000 study - Absorber contains two beds of structured packing ## Flue Gas Bypass Bypass method determined to be least costly method to obtain lower CO₂ recovery levels | CO ₂ (Moles/hr) | Case 1 (90%) | Case 2 (70%) | Case 3 (50%) | Case 4 (30%) | |----------------------------|--------------|--------------|--------------|--------------| | FLUE GAS | 19,680 | 19,680 | 19,680 | 19,680 | | BYPASS | 0 | 4,374 | 8,746 | 13,120 | | ABSORBER FEED | 19,680 | 15,306 | 10,934 | 6,560 | | STACK | 1,962 | 5,924 | 9,846 | 13,770 | | CO ₂ PRODUCT | 17,720 | 13,766 | 9,822 | 5,906 | | # Trains | 2 | 2 | 2 | 1 | # **CO₂ Capture Compression, Dehydration and Liquefaction** CO₂ compression to 2,015 psia, EOR specifications | Parameter | Wt % | Vol % | ppmv | |-----------------------------------|-------|-------|--------| | Carbon Dioxide | 96 | 94.06 | 940600 | | C ₂ + and Hydrocarbons | 2 | 2.87 | 28700 | | Hydrogen Sulfide | 1 | 1.27 | 12700 | | Nitrogen | 0.6 | 0.92 | 9200 | | Methane | 0.3 | 0.81 | 8100 | | Oxygen | 0.03 | 0.04 | 400 | | Mercaptans and Other Sulfides | 0.03 | 0.02 | 200 | | Moisture | 0.006 | 0.01 | 100 | ### **Four Stage Process:** Compression \Longrightarrow Drying \Longrightarrow Refrigeration \Longrightarrow Pumping # **CO₂ Capture Compression, Dehydration and Liquefaction** # **CO₂ Capture Compression, Dehydration and Liquefaction** # **CO₂ Capture Process Equipment** CO₂ sorbent technology improvements leads to significant decrease in equipment requirements and capital cost! | | 2006 Study | | 2001 | Study | |---------------------------------|------------|----------------|------------|----------------| | CO ₂ Capture Process | No. | ID/Height (ft) | No. | ID/Height (ft) | | Absorber | 2 | 34/126 | 5 | 27/126 | | Stripper | 2 | 22/50 | 9 | 16/50 | | Distance from stack | 100 ft | | 1,500 feet | | | | | | | | | Heat Exchangers | No. | | No. | | | Reboilers | 10 | | 9 | | | Stripper CW Cond. | 12 | | 9 | | | Other Heat Exchangers | 36 | | 113 | | | Total Heat Exchangers | 58 | | 131 | | | | | | | | | CO ₂ Compressor | 2 | | 7 | | | Propane Compressor | 2 | | 7 | | | | | | | | | EPC Cost \$MM | 276 | | 500 | | ### **Steam Turbine Modifications** ### **Design Assumptions:** - Existing turbine/generator required to operate at maximum load in case of a trip of the MEA plant - All pressures to be within a level that no steam will be blown off - 2. Feedwater system modifications to allow CO₂ capture and compression system heat integration - CO₂ compressor intercoolers, stripper overhead cooler, refrigeration compressor cooler - 3. Well within the LP turbine "lower load limit" after significant steam extraction for the 90% case (Conesville #5 instruction manual) - 4. New Let Down turbine vs. modifying existing LP turbine ### **Steam Turbine Modifications** ### New Let Down Turbine 2. EPC Cost ~ \$10MM for each case ### **Steam Turbine Modifications** Alternatives to LDT? # **New Equipment Locations Identified** # **Plot Plan (Absorber location)** ### Plot Plan – Let Down Turbine, Strippers, & CO₂ Compressors ### **Overall Plant Performance** - Plant Electrical Output - Plant Auxiliary Power - Plant Thermal Efficiency - Plant CO₂ Emissions ## **Power Output Distribution** # **Base load (Net) Output Impact** ### Losses to Grid ## **Plant Thermal Efficiency** (HHV Basis) Note: NEW Sub-critical net efficiency (with 90% CO₂ capture) decreases from 36% to 24% ## **Summary Performance Results** | | Base | 2001 | 2006 Study | | | | | |-------------------------------------|-------|--------|------------|--------|--------|--------|--| | % CO ₂ Capture | 0 | 96 | 90 | 70 | 50 | 30 | | | Gross Power (MW) | 463 | 331 | 388 | 406 | 424 | 441 | | | | | | | | | | | | Base Plant Load | 30 | 30 | 30 | 30 | 30 | 30 | | | Gas Cleanup/CO ₂ Capture | - | 8 | 12 | 10 | 6 | 4 | | | CO ₂ Compression | - | 42 | 43 | 33 | 24 | 14 | | | Total Aux. Power (MW) | 30 | 80 | 85 | 73 | 60 | 48 | | | Net Power (MW) | 433 | 251 | 303 | 333 | 364 | 393 | | | Heat Rate (Btu/kWh) | 9,479 | 16,875 | 13,984 | 12,719 | 11,670 | 10,796 | | | Efficiency (HHV) | 35 | 20 | 24 | 27 | 30 | 32 | | | Energy Penalty ¹ | - | 15 | 11 | 8 | 5 | 3 | | <u>1CO₂ Capture Energy Penalty</u> = Percent points decrease in net power plant efficiency due to CO₂ Capture **Note**: 12% Capture penalty for a new sub-critical plant with MEA Capture 8% Capture penalty for a new super-critical plant with MEA Capture **4% Efficiency Improvement** # CO₂ Emissions # CO₂ Captured # **CO₂ Avoided Emissions** #### **Economics** - Capital Costs - Incremental COE - Mitigation Costs - Sensitivity Analyses ## **Plant Retrofit Capital Costs** | EPC Costs (\$1000's) | 2001 | 2006 Study | | | | |---------------------------------------|---------|------------|---------|---------|---------| | % CO ₂ Capture | 96 | 90 | 70 | 50 | 30 | | CO ₂ Capture & Compression | 500,807 | 275,938 | 249,822 | 186,694 | 134,509 | | Flue Gas Desulfurization | 20,540 | 20,540 | 20,540 | 20,540 | 20,540 | | Letdown Steam Turbine | 10,516 | 9,800 | 9,400 | 8,900 | 8,500 | | Boiler Modifications | 0 | 0 | 0 | 0 | 0 | | Total Retrofit Costs | 531,863 | 306,278 | 279,762 | 216,134 | 163,549 | | | | | | | | | New Net Output (kW) | 251,634 | 303,317 | 333,245 | 362,945 | 392,067 | | \$/kW-New Net Output | 2,114 | 1,010 | 840 | 596 | 417 | | \$/kW-Original Net Output* | 1,226 | 706 | 645 | 498 | 377 | ^{*}Original net output = 433,778 kW Note: Capital costs from 2001 study were escalated to 2006 dollars Note: Economic results from 2001 study were escalated to 2006 dollars Variable O&M cost includes SO₂ Credit at \$608/ton ## Cost for Reducing Emissions Note: Economic results from 2001 study were escalated to 2006 dollars ## CO₂ Avoided Cost ## CO₂ Captured Cost # **Economic Results Sensitivity Study Basis** | Parameter | Units | Base | Sensitivity Analysis | | | | | | |----------------------------|------------------------|------------------|----------------------|-----------|----------|-----------|--|--| | Capital Cost | \$ | | Base -50% | Base -25% | Base+25% | Base+250% | | | | Capacity Factor | % | 70 | | 54 | 90 | | | | | Coal | \$/GJ | 2.00 | 1.00 | 1.50 | 2.50 | 3.00 | | | | | \$/10 ⁶ Btu | 2.11 | 1.06 | 1.58 | 2.64 | 3.17 | | | | Natural Gas | \$/GJ | 6.64 | 3.32 | 4.98 | 8.29 | 9.95 | | | | | \$/10 ⁶ Btu | 7.00 | 3.50 | 5.25 | 8.75 | 10.50 | | | | CO ₂ Sell Price | \$/ton | 0, 25, 50 \$/ton | | | | | | | - 240 economic evaluation cases assessed - Results allow interpolation to apply results to assess other power plants in the U.S. fleet ## **Example Economic Sensitivity** (Case-1 = 90% Capture) ## **Example Economic Sensitivity** (Case-1 = 90% Capture) CO₂ Allowance Price [\$/ton] ## **Summary & Conclusions** - 1. No major technical barriers exist for retrofitting AEP Conesville unit #5 to CO₂ capture with post combustion amine base capture system - 2. Compared to the 2001 study, this study with an advanced amine (90% CO₂ Capture case) showed: - Improvement in energy penalty of 4.2% points, - Reduction in investment cost from \$2100 to \$1010/kW - Reduction in incremental COE from 7.2 to 3.9 ¢/kWh - Reduction in mitigation cost from 85 to 51 \$/tonne of CO₂ avoided - 3. Efficiency penalty was 10.6% for 90% CO₂ capture. Efficiency penalty varied linearly with CO₂ capture fraction. - 4. No Sweet Spot—near linear decrease in incremental COE with reduced CO₂ capture level - 5. Sufficient results to answer various definitions of "optimal CO₂ capture" from existing plants #### **Future Work** #### Apply Results to Existing Coal Fleet - 1. Categorize current U.S. PC fleet based on likelihood of CO₂ capture retrofit ("Worst Case Scenario", "Best Case Scenario", "Baseline", etc.) - 2. For each level of CO₂ capture (30%, 50%, 70%, 90%), calculate the economic impact on a regional and national level for each category - 3. Given the same incremental increase in COE for a new IGCC and PC power plant with 90% CO₂ capture, what is the equivalent % CO₂ capture from the existing power plant fleet for each scenario on a regional and national basis? - 4. Make-up power for existing fleet under different scenarios